The Electrical Conductivity of Solid and Molten (Li, K)₂SO₄ and Solid Li₂SO₄ with Small Quantities of Sodium, Potassium and Rubidium Sulphate

ARNOLD KVIST

Department of Physics, Chalmers University of Technology, Göteborg

(Z. Naturforschg. 21 a, 1221-1223 [1966]; received 1 May 1966)

The electrical conductivity of molten and solid (Li, K) $_2$ SO $_4$ has been measured from 550 to 1086 $^\circ$ C. The electrical conductivity of the high temperature modification of lithium sulphate increases when potassium and rubidium ions are added to the salt, but decreases when sodium ions are added. An explanation of these changes is proposed.

Several investigations of solid and molten (Li, K)₂SO₄ have been performed in this institute ¹⁻³. In connection with these measurements we have now measured the electrical conductivity of solid and molten (Li, K)₂SO₄. Since an irregular behavior of the electrical conductivity of solid lithium sulphate with small quantities of potassium sulphate was found, we have also measured the conductivity of solid lithium sulphate with small quantities of sodium sulphate and rubidium sulphate.

The experimental technique is described elsewhere in detail ⁴. All chemicals were commercial reagent grade and were used without further purification. Before pouring the salts into the cells of pure quartz, they were dried at 180 °C and mixed mechanically. The measurements were performed in argon atmosphere, but to avoid small gas bubbles in the cells, the pressure was lowered for a few minutes before the measurements started.

A. The Molten State

The specific electrical conductivity of molten (Li, K)₂SO₄ is tabulated in Table 1. The conductivity of pure Li₂SO₄ has recently been published by the author ⁵. Arnot ⁶ has measured the electrical conductivity of pure potassium sulphate and his results are about five per cent higher than the results in this investigation.

It has been found by James and Liu⁷ that the deviation from volumetric additivity for the Li₂SO₄ – K₂SO₄ eutectic is small and it is thus pos-

- ¹ V. Ljubimov and A. Lundén, Z. Naturforschg., to be published.
- ² A. Lundén, B. Jonson, and B. Augustsson, Z. Naturforschg. 21 a, 593 [1966].

3 A. Lundén and J.-E. Olsson, unpublished.

⁴ A. Kvist and A. Randsalu, Z. Naturforschg., to be published.

sible to calculate the density over the whole concentration range from the densities of pure lithium sulphate and potassium sulphate measured by JAEGER and KAHN⁸.

Ljubimov and Lundén ¹ have recently in electromigration experiments measured the relative mobility Δb of the lithium and potassium ions in molten and solid (Li, K)₂SO₄. From their and our data it is possible to calculate the absolute mobilities of the two cations relative the anion lattice from the relations

$$\begin{split} \varDelta b &= b_1 - b_2 \;, \\ \varDelta &= F \; b = F \left(x \; b_1 + (1 - x) \; b_2 \right) \end{split}$$

where F is the Faraday constant and b_1 and b_2 are the mobilities of the two cations relative the anion lattice.

In Fig. 1 we have plotted b_1 , b_2 and A/F as functions of the potassium sulphate concentration at

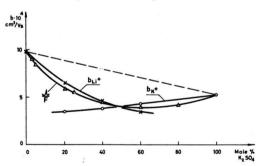


Fig. 1. The mobility of the potassium and the lithium ions and the mean mobility of the cations relative the sulphate ions at 750 °C.

- ⁵ A. Kvist, Z. Naturforschg. **21** a, 487 [1966].
- ⁶ K. Arndt, Z. Elektrochem. 12, 337 [1906].
- ⁷ D. W. James and C. H. Liu, J. Chem. Eng. Data 8, 469 [1963].
- ⁸ F. M. JAEGER and J. KAHN, Koninkl. Ned. Akad. Wetenschap. Proc. 19, 381 [1916].

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

1222 A. KVIST

T	×	T	34
$^{\circ}\mathrm{C}$	Ω^{-1} cm ⁻¹	°C	Ω^{-1} cm ⁻¹
3 00 mol	eº/ KeSO.	25.00 mal	e% K ₂ SO ₄
3.00 mole% K ₂ SO ₄			
903.8	4.076	767.3	1.812
876.3	3.936	737.5	1.679
851.5	3.804	714.6	1.571
824.8	3.655	677.0	1.397
803.5	3.533	659.3	1.316
		635.0	1.202
4.89 mole% K ₂ SO ₄		610.0	1.085
		586.8	0.929
911.3	3.931	569.8	0.808
898.3	3.871	560.4	0.744
874.0	3.750		1
852.0	3.636	40.00 mol	$e^{0}/_{0} K_{2}SO_{4}$
828.0	3.504		
807.5	3.392	813.3	1.561
799.3	3.349	825.5	1.607
792.3	3.309	842.5	1.672
787.3	3.276	874.5	1.794
780.0	3.238	889.3	1.845
774.3	3.207	906.3	1.909
769.8	3.176	852.0	1.709
		841.6	1.668
$20.00 \text{ mole}\% \text{ K}_2\text{SO}_4$		808.5	1.541
		795.5	1.500
902.3	2.565	784.5	1.458
888.0	2.506	770.3	1.399
878.0	2.460	751.3	1.329
873.3	2.447	736.0	1.264
863.5	2.399	721.3	1.205
847.5	2.334	716.8	1.190
841.2	2.301		
837.0	2.297	60.00 mole% K ₂ SO ₄	
818.8	2.219		
806.4	2.165	903.8	1.551
781.3	2.045	890.3	1.505
774.0	2.010	878.5	1.469
762.3	1.956	860.0	1.411
750.3	1.899	841.4	1.356
738.8	1.849	822.0	1.299
724.8	1.783	799.0	1.221
704.8	1.688	782.8	1.169
687.5	1.603	765.8	1.118
674.3	1.539	749.5	1.064
629.0	1.304	726.3	0.990
622.5	1.269	708.8	0.927
607.8	1.193		
596.5	1.138	80 00 mg	$le\% K_2SO_4$
580.0	1.054		
562.0	0.958		1.617
552.8	0.913	943.0	1.573
		950.0	1.591
	$e\% K_2SO_4$	100.00 mole% K ₂ SO ₄	
848.0	2.155		
873.8	2.250	1086.4	1.926
907.3	2.400	1084.5	1.922
938.3	2.504	1081.3	1.917
859.5	2.200	1078.5	1.912
834.5	2.095	1074.8	1.908
004.0			1 000
815.8	2.014	$1072.0 \\ 1068.3$	$\frac{1.899}{1.887}$

Table 1. The specific electrical conductivity of molten $(Li, K)_2SO_4$. The conductivity of pure lithium sulphate has recently been published by the author 5 .

approximately 750 °C. The three curves intersect at about 45 mole per cent potassium sulphate.

Since the melting point of potassium sulphate is 1068 $^{\circ}$ C, the conductivity of this salt was extrapolated to 750 $^{\circ}$ C.

The excess conductivity $\varDelta \Lambda$ is defined from

$$\Delta \varLambda = \varLambda_{\rm ideal} - \varLambda \ ,$$
 where
$$\varLambda_{\rm ideal} = x \, \varLambda_1 + (1-x) \, \varLambda_2 \, .$$

x is the equivalent fraction of component 1 and A_i is the conductivity of the pure salt.

The relative excess conductivity of (Li, K)₂SO₄ is almost ten times the relative excess conductivity of (Li, K)NO₃ (l. c. ⁹), but most salt mixtures containing lithium ions show definite deviations from additivity ¹⁰.

B. The Solid State

X-ray measurements have shown that the structure of α -Li₂SO₄ is cubic face-centered with unit cell edge 7.07 Å ¹¹. The cations can move rather freely in the lattice and the electrical conductivity of the high temperature modification is almost the same as the conductivity of the melt ^{5, 12}.

In Fig. 2 we have plotted the specific electrical conductivity \varkappa of $\alpha\text{-Li}_2\mathrm{SO}_4$ with 3.00 mole per cent potassium sulphate. In the melt the conductivity

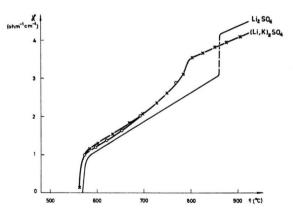


Fig. 2. The specific electrical conductivity of solid and molten Li_2SO_4 with 3.00 mole per cent K_2SO_4 . \times : decreasing temperature; \circ : increasing temperature.

9 B. DE NOOIJER, Theses, Amsterdam 1965.

¹⁰ E. R. VAN ARTSDALEN and I. S. YAFFE, J. Phys. Chem. **59**, 118 [1955].

¹¹ T. FØRLAND and J. KROGH-MOE, Acta Chem. Scand. 11, 565 [1957].

¹² A. Kvist and A. Lundén, Z. Naturforschg. 20 a, 235 [1965].

 (\varkappa_l) is lower in the mixture than in the pure salt, but in the solid high temperature modification it (\varkappa_s) is highest in the mixture. \varkappa_s is however higher when the temperature is lowered than when it is raised. This effect seems to increase with increasing concentration of potassium ions. A slight time dependence of \varkappa_s at constant temperature was also found.

Lundén, Jonson, and Augustsson² have found that also the rheological properties of solid (Li, K)₂SO₄ are dependent on the pretreatment of the salt.

In order to investigate the influence on the electrical conductivity from foreign univalent ions we have also used sodium and rubidium ions as impurities. The radius of the sodium ion is only 0.98 Å, but the rubidium ion is somewhat greater than the potassium ion.

Fig. 3 shows the electrical conductivity of (Li, Na)₂SO₄ with 4.89 mole per cent sodium sulphate. The conductivity is lower in the mixture than

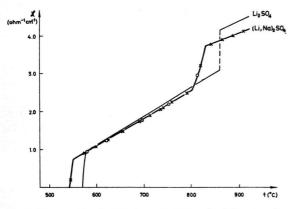


Fig. 3. The specific electrical conductivity of solid and molten Li₂SO₄ with 4.89 mole per cent Na₂SO₄. ×: decreasing temperature; o: increasing temperature.

in the pure salt and it is not affected by the pretreatment. (Li, Rb) ₂SO₄ with 2.00 mole per cent rubidium sulphate behaves almost like (Li, K) ₂SO₄ (Fig. 4).

Lundén and Olsson 3 have in thermal diffusion experiments found a considerable enrichment of the heavy cations in solid (Li, K)₂SO₄ and (Li, Rb)₂SO₄ at the hot side, but in solid (Li, Na)₂SO₄ the enrichment was insignificant.

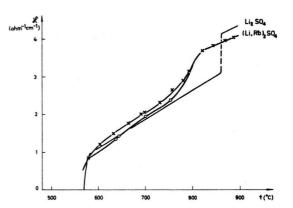


Fig. 4. The specific electrical conductivity of solid and molten
Li₂SO₄ with 2.00 mole per cent rubidium sulphate.
x: decreasing temperature; o: increasing temperature.

In the sulphate lattice there are two positions with different sizes for the cations. The free spaces of these positions are 1.42 Å and 2.76 Å, respectively ¹³. Both positions are however too small for a potassium or a rubidium ion and it is therefore probable that these ions are attracted by dislocations in the salt. They will then be very mobile along the grain boundaries and electromigration experiments have shown ¹ that the mobility of the potassium ion even exceeds the mobility of the lithium ion.

According to the X-ray measurements ¹³ the sodium ions are small enough to replace lithium ions in the lattice, but since only the positions with the biggest free space are available for them, their mobility should be lower than the mobility of the lithium ions and this will cause the observed decrease in the conductivity.

In solid (Li, Ag)₂SO₄ with small quantities of silver sulphate an X-ray reflection which should not appear for a cubic face-centered structure has been found by Øye ¹³ and he has suggested as a possible explanation that the formation of the cubic lattice is incomplete.

It was not possible to measure the electrical conductivity of solid potassium sulphate in this investigation since its structure is hexagonal and thus does not exhibit rotational symmetry.

This work has been supported by Chalmerska Forskningsfonden.

13 H. A. Øye, Theses, Trondheim 1963.